skip to main content


Search for: All records

Creators/Authors contains: "Fan, Qinghua"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Recent years have witnessed marked progress in the efficient synthesis of various enantioenriched 1,2,3,4-tetrahydroquinoxalines. However, enantio- and diastereoselective access to trans-2,3-disubstituted 1,2,3,4-tetrahydroquinoxalines remains much less explored. Herein we report that a frustrated Lewis pair-based catalyst generated via in situ hydroboration of 2-vinylnaphthalene with HB(C6F5)2 allows for the one-pot tandem cyclization/hydrosilylation of 1,2-diaminobenzenes and 1,2-diketones with commercially available PhSiH3 to exclusively afford trans-2,3-disubstituted 1,2,3,4-tetrahydroquinoxalines in high yields with excellent diastereoselectivities (>20 : 1 dr). Furthermore, this reaction can be rendered asymmetric by using an enantioenriched borane-based catalyst derived from HB(C6F5)2 and a binaphthyl-based chiral diene to give rise to enantioenriched trans-2,3-disubstituted 1,2,3,4-tetrahydroquinoxalines in high yields with almost complete diastereo- and enantiocontrol (>20 : 1 dr, up to >99 % ee). A wide substrate scope, good tolerance of diverse functionality and up to 20-gram scale production are demonstrated. The enantio- and diastereocontrol are achieved by the judicious choice of borane catalyst and hydrosilane. The catalytic pathway and the origin of the excellent stereoselectivity are elucidated by mechanistic experiments and DFT calculations. 
    more » « less
    Free, publicly-accessible full text available June 20, 2024
  2. A versatile Rh( i )-catalyzed C6-selective decarbonylative C–H alkenylation of 2-pyridones with readily available, and inexpensive alkenyl carboxylic acids has been developed. This directed dehydrogenative cross-coupling reaction affords 6-alkenylated 2-pyridones that would otherwise be difficult to access using conventional C–H functionalization protocols. The reaction occurs with high efficiency and is tolerant of a broad range of functional groups. A wide scope of alkenyl carboxylic acids, including challenging conjugated polyene carboxylic acids, are amenable to this transformation and no addition of external oxidant is required. Mechanistic studies revealed that (1) Boc 2 O acts as the activator for the in situ transformation of the carboxylic acids into anhydrides before oxidative addition by the Rh catalyst, (2) a decarbonylation step is involved in the catalytic cycle, and (3) the C–H bond cleavage is likely the turnover-limiting step. 
    more » « less
  3. Abstract

    A Rh(I)‐catalyzed C6‐selective C−H arylation of 2‐pyridones with inexpensive, readily available, safe and structurally diverse aryl carboxylic acids with the aid of a pyridine directing group is developed. This decarbonylative arylation protocol features an easy‐to‐handle catalytic system, and is amenable to diversely substituted 2‐pyridones and aryl carboxylic acids. It allows access to a wide range of C6‐arylated 2‐pyridones, including those that are difficult to prepare using conventional C−H arylation processes. The method tolerates various electron‐neutral, electron‐rich and electron‐deficient functional groups, and affords the products in 41–91% yields.

    magnified image

     
    more » « less